Megasquirt[®] and the '02

A great fit for the BMW 2002 and it's easier than you think

John Capoccia and Tom Richardson (JohnC) (Grover)

Megasquirt[®] and the '02

- The objective of this tech session is to
 - Give you <u>basic</u> information about Megasquirt[®]
 and its application to the BMW 2002 M10
 - Encourage you to take the plunge if you've been thinking about it
 - Describe some options for implementation, and answer your questions
 - Tell you what you need and where you can get it

Agenda

- What is Megasquirt[®]?
- Why Megasquirt[®]?
- How it Works
- Getting Started
- What you need
- Where to get what you need
- Configuring
- Tuning
- Q&A

But first...

- Who are Tom and John, and what are their qualifications?
 - Tom and John are regular guys who like cars, and like to work on them
 - We have no previous automotive expertise
 - We don't have particular knowledge that would have been helpful prior to tackling our projects
 - If we can do it so can you!

Our Cars...

What is Megasquirt[®]

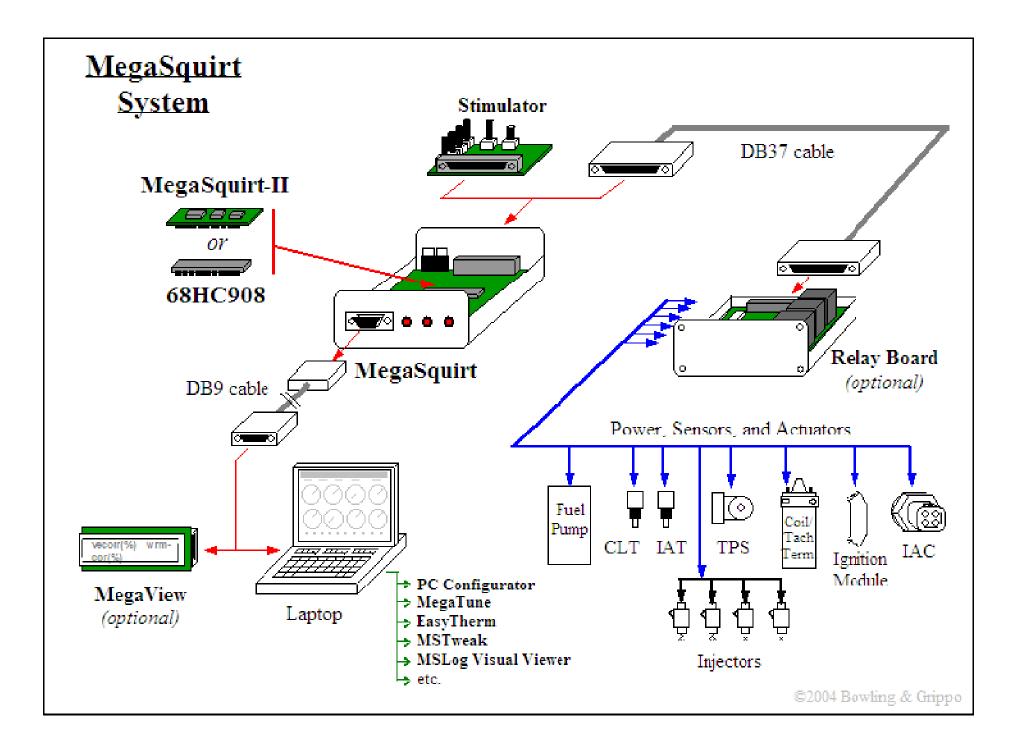
- MegaSquirt[®] is a Do-It-Yourself universal programmable electronic fuel injection controller for internal combustion engines.
- Megasquirt[®] is easily configured to control fuel delivery and spark timing for the BMW 2002 M10 engine

Warning: Megasquirt[®] is not for sale or use on <u>pollution controlled vehicles</u>. Check the laws in your jurisdiction to determine if using a Megasquirt[®] EFI controller is legal for your application

Why Megasquirt[®]?

- Get the best of both worlds
 - High Performance
 - Excellent Fuel Economy
- Easy to tune and optimize to your particular configuration
- Inexpensive compared to proprietary fuel injection systems
- Well suited to the hobbyist A real DIY system, with a large support community

Why Not Megasquirt[®]?


- Megasquirt[®] may not be for you. Do you see yourself here?
 - I'm a traditionalist. BMW reached its pinnacle in 1973 and has been going downhill ever since
 - I love tuning carburetors. I especially enjoy purchasing, collecting and swapping jets, and adjusting mechanical chokes
 - My only use for a computer is to read and post on the 2002 FAQ
 - Reading technical manuals puts me to sleep within 5 minutes
- If this is NOT you, Megasquirt[®] and your '02 may be a good match!

How Megasquirt[®] Works

- The basic concept is that the ECU gathers information about how much oxygen is available for a given cylinder charge, then it injects the appropriate amount of fuel to achieve the desired Air to Fuel Ratio (AFR).
 - Volumetric efficiency (VE)
 - Your engine is an air pump. VE is a measure of how efficient the engine is with regard to filling the combustion chamber with a charge of fuel and air
 - Intake Air Temperature (IAT)
 - Air density goes down as temperature rises. IAT is one factor used by the ECU to calculate how much fuel to deliver
 - Manifold Absolute Pressure (MAP)
 - Air density increases as pressure rises. High pressure (atmospheric) indicates a Wide Open Throttle (WOT) condition
 - RPM
 - The faster the engine is turning, the more fuel it needs

How Megasquirt[®] Works

- Megasquirt[®] can also control your spark advance in a way that is superior to a distributor
 - A distributor advances spark only as a function of RPM, with an adjustment for MAP (if you have a vacuum advance or retard)
 - Megasquirt[®] can advance or retard your spark as a function of RPM *and* MAP, and is tunable in a 12X12 grid
 - With Megasquirt[®], you can tune your ignition timing on the fly. No re-curving. You optimize to every condition (Wide Open Throttle, freeway cruising, etc.)

Other Useful Capabilities

- Idle Air Control
 - Your '02 can start quickly with a stable idle regardless of the temperature
- Rev Limiter
 - Extremely useful! Especially during break-in
- X-Tau
 - A modern algorithm to enrich at throttle tip-in (more efficient than Accel Enrichment)
- Electric Fan Control
 - You set the on-off temperature parameters to exactly what you want
- Fuel cut-off
 - The system will turn off the fuel pump after three seconds if the engine isn't turning

Getting Started

Preparing your car

- Battery relocation
 - In general, it's a good idea to move your battery to the trunk or under the back seat to make more room for air intake
- Electric Fuel Pump
 - The in-tank fuel pump from a E-30 318is is ideal
- Return Fuel Line (early cars)
 - The early cars don't have a return fuel line. The common practice is to add a stainless steel line for the main feed and use the original line for the return
 - Tricky to bend and install! Take your time, buy extra material
 - You most likely will need to weld a fitting to the gas tank
- O2 Sensor
 - You'll need to weld a bung onto your header or downpipe

Getting Started

- Decide where you're going to install your ECU Relay Board, Wideband O2 controller, EDIS controller and coil pack
- Other:
 - Now is a good time to consider whether you're going to install an electric fan, upgrade your headlights, install that amp and subwoofer and all that stuff
 - This will make your wiring much easier, which will lead to a cleaner install, and fewer opportunities for mistakes. Ask me how I know...
- Auxiliary Fuse box
 - Not usually necessary if you're using a relay board, but consider future electrical needs

Fabrication

- Toothed Wheel
 - If you are going to use EDIS, you need to mount a toothed wheel on your crank pulley.
- VR Sensor Mount
 - needed for EDIS
- Throttle Position Sensor Adapter
 - There is no Variable TPS that will fit directly on to the 318i or 325i throttle body, so you'll need to fabricate or purchase an adapter
- Throttle Linkage
 - Various ways to approach this

Fortunately, if you're not inclined to make these parts, you can source them from Tom at 02Again

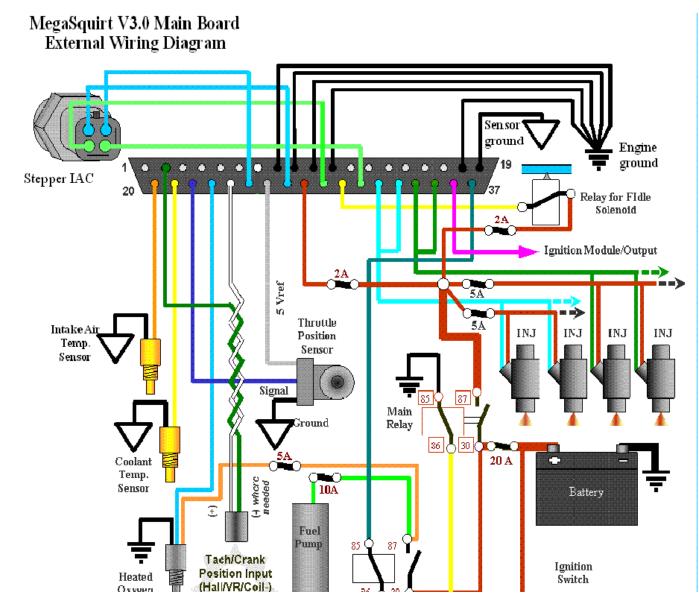
The Basic Parts

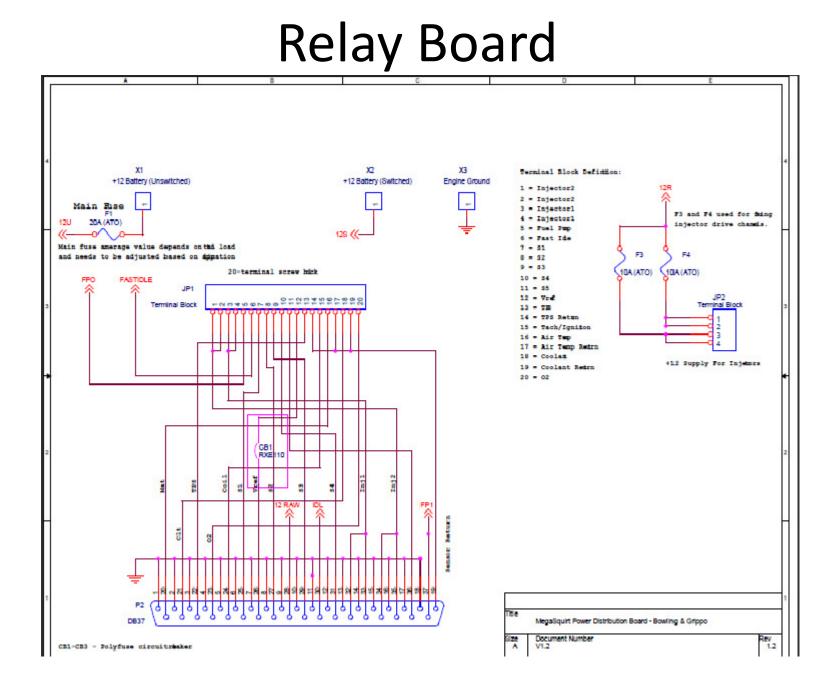
E30 parts:

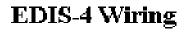
- 318i manifold
- Fuel rail
- Fuel pressure regulator
- Water neck (for the extra sensor bung)
- Coolant bypass tube
- Throttle body and boot (58mm from an M20 is better!)
- Fuel pump (the one from the later M42 318is is best)
- While you are at it, you might want to get a battery cable and terminal, and the 80A alternator and brackets

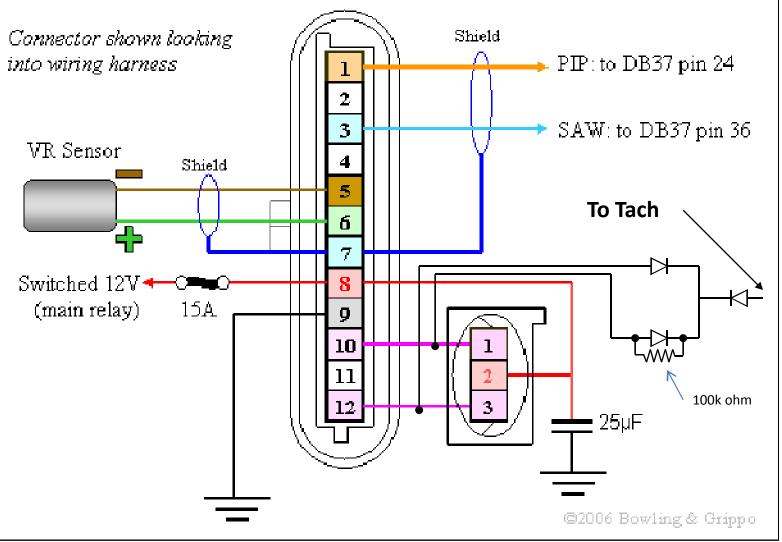
The Basic Parts

- Megasquirt[®] ECU (MS II 3.57 recommended but not essential)
- Relay board (recommended but not essential)
- "Stimulator" (to test your MS II recommended by the experts)
- Wiring kit (or you can make your own)
- O2 sensor (Wideband such as Innovate LC1 is HIGHLY recommended)
- Air Temperature sensor (GM sensor requires no calibration)
- Fuel Injectors (sizing discussed later)
- Variable Throttle Position Sensor and adapter
- EDIS-4 kit (optional)
 - VR sensor
 - Toothed wheel
 - Coil pack
- Fuel Pump Block Off and Distributor Block-off
- Optional:
 - Idle Air Control body and stepper motor or Bosch Fast Idle solenoid valve


Other Stuff

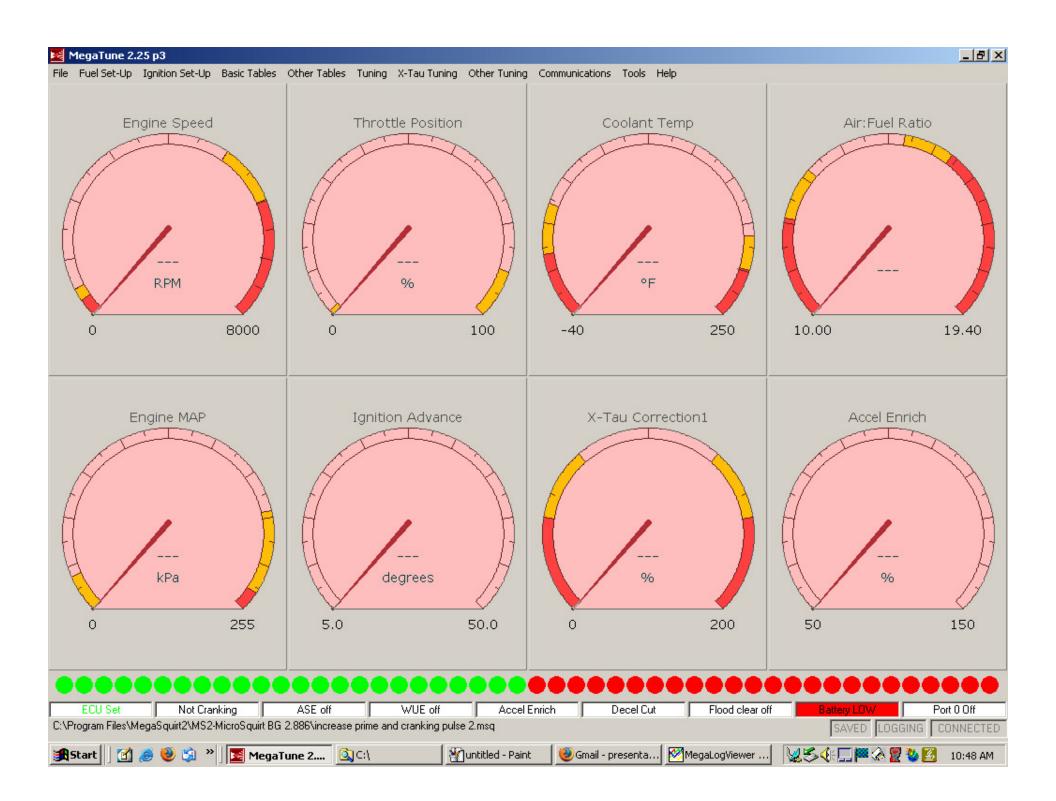

- You also need a laptop and a tuning cable, and if you have a newer laptop, a USB to serial adapter
- Miscellaneous stuff:
 - Wire Strippers
 - Heatshrink tubing
 - Crimpers
 - Connectors
 - Soldering Iron
 - Extra wire
 - etc. etc.


Recommended Sources


- 02Again
 - Tom Rafalski is assembling a Megasquirt[®] One-Stop Shop for the BMW 2002. Block off plates, adapters, toothed wheel mounted on a pulley, IAC body etc. etc. Tom can also provide the ECU, Relay board etc.
- DIYAutotune
 - A great source for the ECU, Relay Board, Wide-Band O2 sensor and controller, wiring and other bits and pieces. Outstanding technical support
- Five-0-Motorsport
 - Fuel injectors
- Boost Engineering
 - EDIS -4 Kits
- Pick-a-Part
 - E30 Parts
 - Fuel Injectors
 - EDIS-4

Wiring

Configuration


- Injector Sizing
 - Use the Megamanual

Horsepower	# Injectors	Flowrate(lbs/hr)
150	4 👻	22
Comp	ute Flowrate	Reset

- High Impedence Injectors is recommended for simplicity
 - Don't have to mess with PWM, resistors or fly-back board

Configuration

- Start with the Megamanual
 - "MegaTune for MS-II v2.8"
 - This section will walk you through the configuration step by step using MegaTune software
 - MegaTune is the software that runs on your laptop that will assist you to build and tune your configuration
 - You can also start with another user's .msq file
 - You still need to walk through step by step to ensure that the file is appropriate for your unique configuration

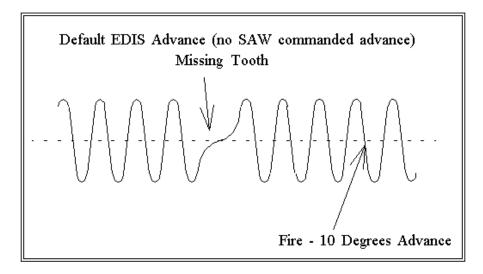
Basic Tables

- The basic tables are
 - VE (Volumetric Efficiency)
 - AFR (Air/Fuel Ratio)
 - Spark Advance
- Other Tables
 - Temperature Values (used for afterstart enrichment, IAC, Priming Pulse, Cranking Pulsewidth etc.)
 - Priming Pulse
 - Cranking Pulsewidth
 - Afterstart percentage and taper

Sample VE Table

	VE Table	I (MAP)													×
File	e Edit Bins	Tools													
	kPa	-%													
	100.0		67	70	74	80	89	92	92	92	91	90	89	87	
	90.0		63	66	70	76	84	90	91	91	91	91	91	91	
	80.0		59	63	67	73	80	86	89	89	90	91	90	90	
	70.0		53	59	65	71	77	81	84	85	86	87	87	88	
	65.0		49	57	63	69	74	78	81	82	83	84	85	86	
	60.0		46	54	59	67	71	75	78	79	80	81	83	85	
	55.0		42	50	56	65	68	72	75	76	77	79	80	82	
	50.0		39	47	53	62	65	68	71	72	73	75	77	78	
	45.0		37	41	49	57	61	64	67	68	69	71	73	74	
	40.0		36	37	43	52	54	58	63	64	65	67	69	70	
	30.0		32	33	34	40	42	45	53	56	58	59	61	64	
	20.0		30	31	30	26	23	24	35	44	49	54	58	56	
		- RPM -													
			900	1200	1500	2000	2800	3600	4300	4800	5200	5600	6000	6500	
		I	500	1200	1300	2000	2000	3000	4000	4000	1 3200	3000	0000	1 0000	

Sample AFR Table


🔀 AFR Table 1	
File Tools	
	'R
100.0	12.9 12.9 12.9 12.9 12.8 12.8 12.7 12.6 12.5 12.4 12.3 12.2
90.0	12.9 12.9 13.1 13.2 13.2 13.2 13.1 12.9 12.8 12.6 12.5 12.4
80.0	13.2 13.2 13.4 13.9 14.1 14.1 13.9 13.5 13.2 12.9 12.7 12.5
70.0	13.3 13.4 13.8 14.6 14.9 14.6 14.3 14.0 13.3 13.0 12.7
65.0	13.5 13.5 14.0 14.9 15.6 15.7 15.3 14.8 14.3 13.6 13.1 12.9
60.0	13.5 13.5 14.1 15.2 15.9 16.3 15.8 15.2 14.6 13.9 13.4 13.0
55.0	13.5 13.5 14.2 15.4 16.3 16.5 16.1 15.4 14.2 13.6 13.2
50.0	13.5 13.5 14.3 15.6 16.6 16.9 16.3 15.6 15.0 14.4 13.9 13.4
45.0	13.5 13.5 14.4 15.7 16.9 17.0 16.4 15.7 15.2 14.7 14.1 13.6
40.0	13.5 13.5 14.5 15.8 17.1 17.2 16.6 16.1 15.4 14.8 14.2 13.8
30.0	13.5 13.5 14.8 16.2 17.4 16.9 16.5 15.9 15.2 14.6 14.1
20.0	13.5 13.5 14.9 16.4 17.8 17.9 17.7 17.2 16.5 15.8 15.1 14.4
	900 1200 1500 2000 2800 3600 4300 4800 5200 5600 6000 6500

Sample Spark Advance Table

🔀 Spark Advance	Table	×
File Edit Bins Tool	;	
kPa deg		ן ר
100.0	11.0 18.0 19.0 20.0 21.0 22.5 24.0 26.0 28.0 28.0 28.0 28.0 28.0 28.0	
90.0	11.0 20.0 22.0 23.3 24.8 26.2 28.0 30.1 32.4 33.0 33.0 33.0	
80.0	11.0 22.0 24.0 26.0 28.0 30.6 32.3 34.4 35.6 35.7 36.0 36.0	
70.0	11.0 24.0 26.0 28.7 30.8 33.6 36.2 37.9 39.4 40.0 40.0 40.0	
65.0	11.0 26.0 28.0 30.0 32.0 35.0 38.0 39.3 41.0 41.5 41.5 41.5	
60.0	11.0 28.0 28.0 30.0 32.0 35.0 38.0 40.1 42.0 42.0 42.0 42.0	
55.0	11.0 28.0 28.0 30.0 32.0 35.0 38.0 40.5 42.0 42.0 42.0 42.0	
50.0	11.0 28.0 28.0 30.0 32.0 35.0 38.0 40.7 42.0 42.0 42.0 42.0	
45.0	11.0 28.0 28.0 30.0 32.0 35.0 38.0 40.6 42.0 42.0 42.0 42.0	
40.0	11.0 28.0 28.0 30.0 32.0 35.0 38.0 40.4 42.0 42.0 42.0 42.0	
35.0	11.0 28.0 28.0 30.0 32.0 35.1 38.0 40.0 40.0 40.0 40.0 40.0	
30.0	11.0 18.0 24.0 26.0 27.9 30.0 33.0 35.0 <th< th=""><th></th></th<>	
	400 500 1200 1350 1500 1750 2000 2500 3000 3500 4500 6000	

Start-Up and Tuning

- Verify timing
 - Check VR sensor signal polarity the VR sensor output falls from a positive to a negative polarity

 You can do this by lining up a tooth on the sensor, then rotating the engine while monitoring the voltage with a voltmeter

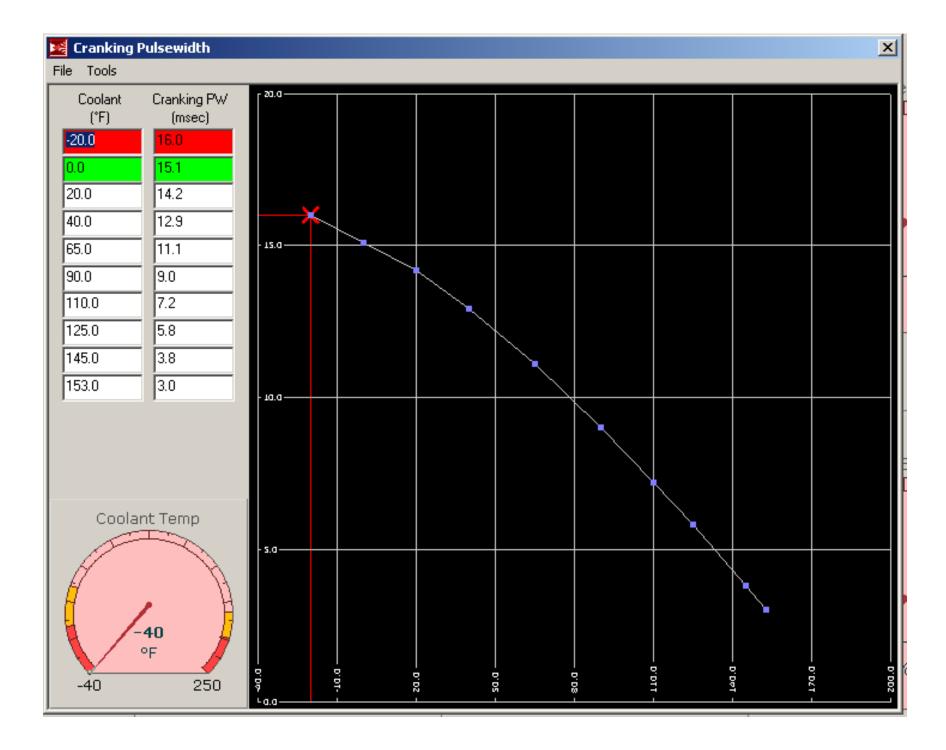
Start-Up and Tuning

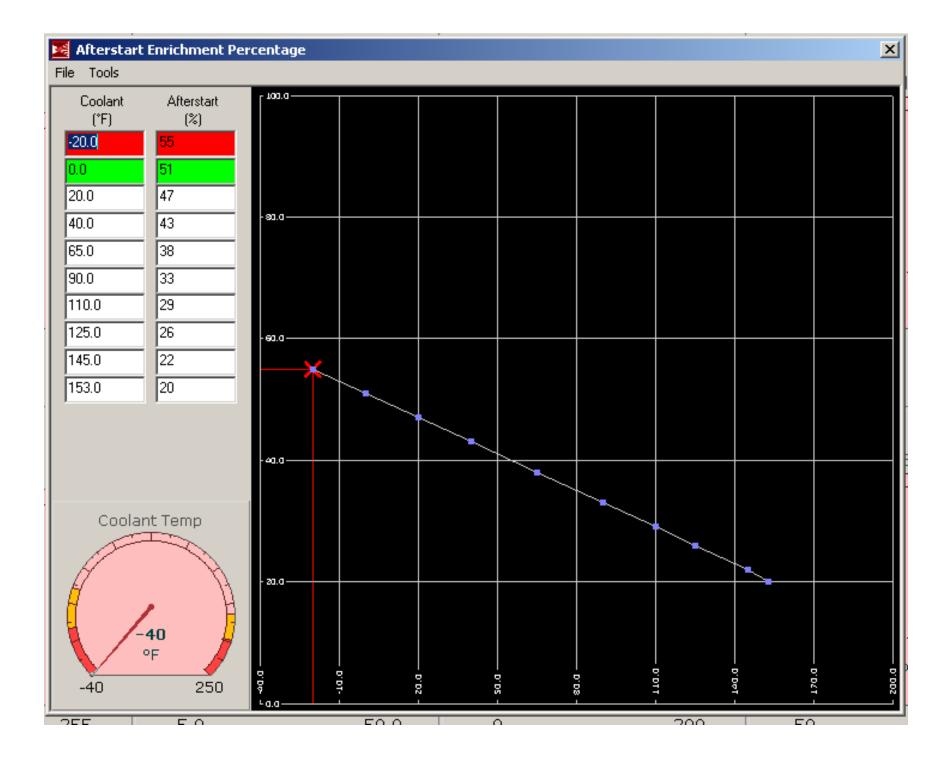
- Calibrate Coolant and Air Intake sensor if not using GM sensor
- Calibrate TPS
- Configure O2 Sensor Controller
- Get the car to start and idle
- Go easy while calibrating your VE table
 - Use the Megalog Viewer program to calibrate your VE table
 - Once you have your VE table somewhat refined, you can start tweaking things
 - Try X-Tau before messing around too much with Accel Enrichment
- READ THE MEGAMANUAL
- ASK QUESTIONS

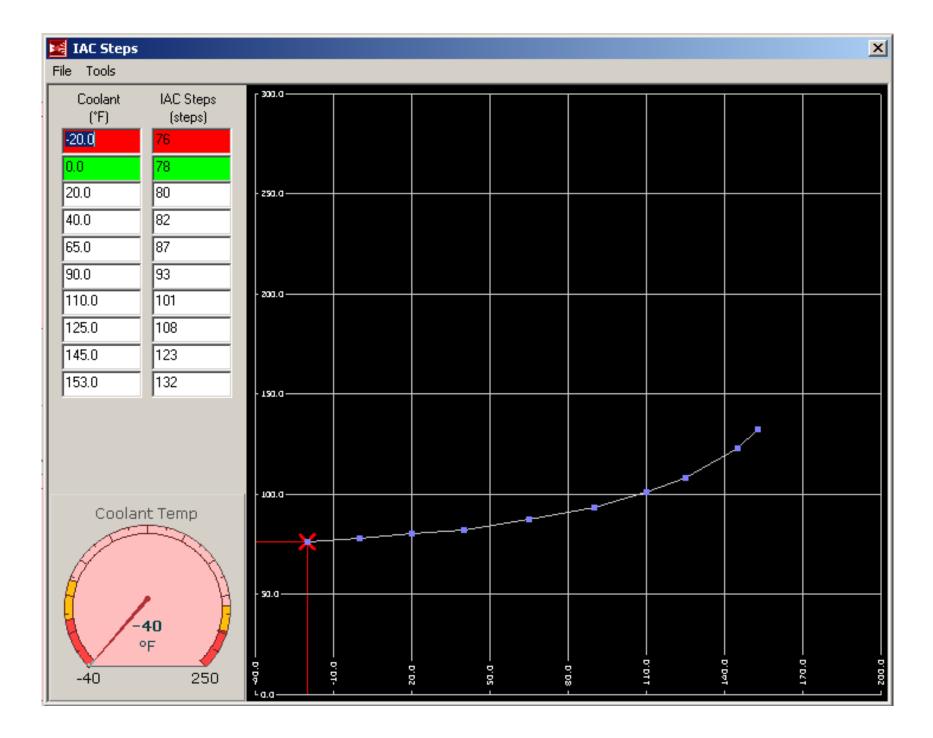
🔀 General Settings		×
ECU Type (1=MS-II, 2=MicroSquir	t)	ħ
MUST set ECU Type before edittir	ng other valu	es.
Engine displacement (cu.in.)		121.0
Injection Timing Delay (%)		0
Dual Table Use	Single Tabl	le 🔽
Barometric Correction	Initial MAP	Reading 💌
X-Tau Usage	Warm-up +	Accel/D 💌
Prime, ASE, WUE Baro Tables	Table	•
Input Smoothing Factors		
MAP/MAF Averaging Lag Factor		70
RPM Averaging Lag Factor		50
TPS Averaging Lag Factor	75	
Lambda Averaging Lag Factor		60
CLT/IAT/Battery Lag Factor		50
Knock Averaging Lag Factor		80
Sampling Rates		
TPS Sample Rate (msec)		25
MAP Sample Rate (msec)		25
F1 Fetch From ECU Burn To	ECU	Close
🔀 Injector Characteristics		x
		lk o

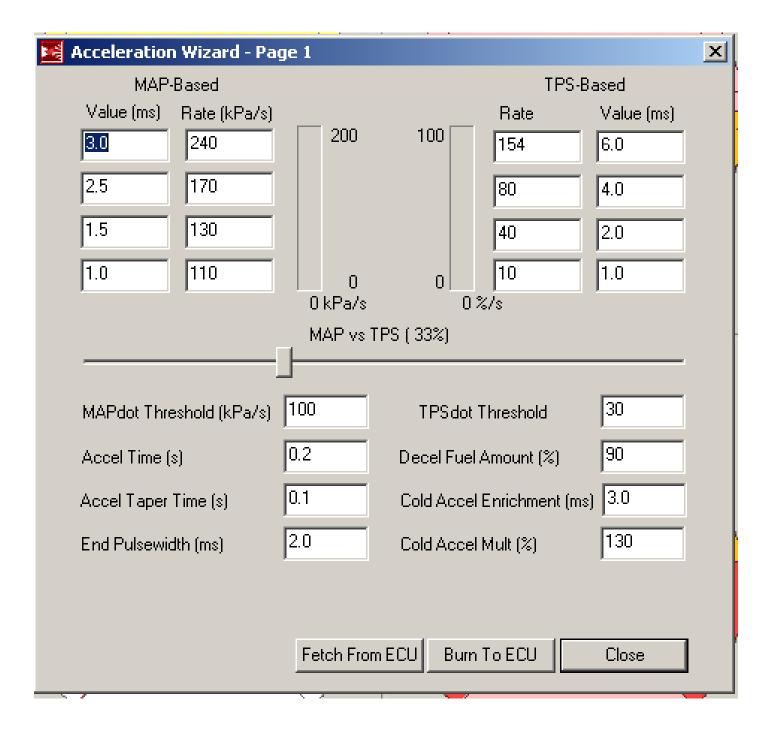
🛂 Idle Control	×
Algorithm 15-Minute	IAC 🔽
Fast Idle Temperature (*F)	140.0
Time Step Size (msec)	2.5
Acceleration Step Size (msec)	0.0
Minimum # steps to move (steps)	2
PWM Frequency (Hz)	80
Start Value (retract)	280
Cranking Position (extend) (steps)	70
Crank-to-Run Taper Time (sec)	8
Hysteresis (*F)	5.0
Time-Based After Start (extended warm-up)	
Cold Temperature (*F)	0.0
Cold Position (steps)	20
Cold Taper Time (sec)	300
F1 Fetch From ECU Burn To ECU	Close
	V
Bort PM2, Eldle	×

Market Street St	2
Injector Open Time (msec)	h .0
Battery Voltage Correction (ms/v)	0.20
PWM Current Limit (%)	75
PWM Time Threshold (msec)	25.5
Injector PWM Period (µsec)	66
Red settings require an MS-II reboot!	
F1 Fetch From ECU Burn To ECU	Close


🧏 Generic Port Setti	ngs	×
Port PM2 - Fidle	💌 🗹 Enabl	ed
Variable	Threshold	l Hysteresis
coolant 💌	> 💌 170.0	5.0
And	•	
rpm	> 💌 450	10
Power-on value	0 💌	
Triggered value	1 💌	
Fetch From ECU	Burn To ECU	Close


	1
🔀 Injection Control - Page 1	x
Calculate Required Fuel	
Required Fuel	7.00
└── Injector Control	
Control Algorithm	Speed Den: 💌
Injections Per Engine Cycle	2 💌
Injector Staging	Simultaneo.
Engine Stroke	Four-stroke 💌
Number of Cylinders	4 💌
Injector Port Type	Port Injectio 💌
Injectors	4
Engine Type	_
Fetch From ECU Burn To ECU	J Close
Required Fuel Calculator	×
	⊙ CID ○ CC
Number of Cylinders 4 Injector Flow 23 Air-Fuel Ratio 14.7	●lb/hr C cc/min
(OK Cancel


🔀 Rev Limiter	×
Algorithm [Maximum Retard (deg)	Fuel Cut
Lower Rev Limit (RPM)	6300
Upper Rev Limit (RPM)	6400
F1 Fetch From ECU Burn To E	ECU Close
🔀 Other Fuel Settings	×
Engine Start Up	
Max. Cranking Speed (RPM)	300
VE Table Adjustments	
(May have to save MSQ and reload	to get to stick)
Use MAP/baro for tables	Use MAP only 📃 💌
- Must also set/unset MAPbaro in	n settings.ini -
AFR Table Fuel Calc Usage	Separate VE & AFR 💌
AFR Stioch. Ratio (Volts)	1.470
AFR Stioch, Ratio (AFR)	14.7
Two-Point Prime	
Prime Pulse Cold PW (msec)	12.0
Prime Pulse Hot PW (msec)	4.0
Prime Delay (sec)	0
Additional Fuel (switched by E0 low	or cyclic)
Fuel Added to Base PW (msec)	0.0
Additional Fuel (cyclic only)	
Time Between Added Fuel (sec)	0
Number of Cycles	0
F1 Fetch From ECU Burn To B	ECU Close


🗧 EGO Control		×
EGO Sensor Type	Single Wide	e Band 💌
NB AFR Target (AFR)		0.0
Ignition Events per Step		16
Controller Step Size (%)		1
Controller Authority ± (%)		0
Active Above Coolant Temp (*F)		158.0
Active Above RPM (RPM)		1200
Active Below TPS (%)		75.0
Active Below MAP (kPa)		85.00
WB Controller Settings		
Algorithm	Simple	•
PID Proportional Gain (%)		100
Transport Delay 1 (msec)		10
Transport Delay 2 (revs)		4000
PID Integral (%)		20
PID Derivative (%)		0
F1 Fetch From ECU Burn To	ECU	Close

🔀 Base Ignition Settings	×
General Ignition	
Trigger Offset (deg)	 5.00
Skip Pulses	3
Prediction Settings	
Predictor Algorithm	Alpha-Beta-Gamma 💌
Alpha (%)	90
Beta (%)	80
Gamma (%)	10
Tach Signal Masking	
Time Mask (msec)	0.0
Percentage Mask (%)	50
Next-Pulse Tolerance	
Cranking (%)	50
After-start (%)	70
Normal Running (%)	25
Check Tach Sync Options	Check Always 💽
Ignition Input Capture	Rising Edge 📃
Cranking Trigger	Calculated 💌
Coil Charging Scheme	EDIS 💌
Spark Output	Going High (Inverter 💌
F1 Fetch From ECU Burn To	ECU Close

🥙 MegaLog¥iewer - datalog200811221634.xls

Record 5382 of 6136 - Zoom: 8x - Play speed: 100.0%

Crank:N ASE:N Warm:N Run:Y Accel:N Decel:N bit 7:N bit 8:N

- 🗆 ×

🔼 Time:508735.013	SecL:303	RPM:5622	MAP:101.0	MAP/baro:102.4	MAF:0	TP:100
VBatt:13.20	AFR:13.20	IAT:84.6	CLT:168.4	Engine:1	Gego:100	Gair:97
Gwarm:100	Gbaro:100	Gammae:97	AccelEnrich:100	Gve:89	PW:8.219	DutyCycle1:77.0
🔁 Gve2:89	PW2:8.219	DutyCycle2:77.0	SparkAdv:27.0	knockRet:0.0	ColdAdv:0.0	Dwell:0.70
🕜 tpsDOT:7	mapDOT:34	IAC:132	dettaT:5320	Trigger±:0	tachCount:20361	🚺 XTau1:99
Tau2:99 XTau2:99	E85fuelCorr:100	Ethanol%:0	AFRtrgt1:12.30			
						⊖ ≫
🖁 Start 🛛 🚮 🥭 🧕) 😭 👋 🔣 MegaTu 🚺	My Docu My untitled -	🖸 Microsoft 🥹 Gmail -	pr	<u> </u>	🛎 🏡 🏆 🥸 🛐 — 8:36 AM

Acknowledgements

- The Megasquirt community
 - <u>http://www.msefi.com/index.php</u>
 - <u>http://www.megamanual.com/mtabcon.htm</u>
- Finkbuilt
 - <u>http://www.finkbuilt.com/blog/category/automotive/megasquirt-efi/</u>
- Zenon
 - <u>http://www.zeebuck.com/bimmers/bmvseite/</u>
- Tim S.
 - <u>http://www.hbci.com/~tskwiot/2002.html</u>
- Johnhup
 - http://www.bmw2002faq.com/content/view/79/32/
- Curtis Ingraham
- Cris Padagas

Questions???